

Reviewed by: J. May
Reviewed by: G. Golling
Reviewed by: M. Mayfield
Text update: December 9, 2010
Date reviewed: Fall 2015
C&GE approved: September 14, 2015
Board approved: October 9, 2015
Semester effective: Fall 2016

<u>Geology (GEOL) 1500 Introduction to Geology (4 Units) CSU:UC</u> [formerly Geology 10]

Advisory: Eligibility for English 1500 strongly recommended

Total Hours: 48 hours lecture; 48 hours lab (96 hours total)

Catalog Description: An introduction to the principles of geology with emphasis on Earth processes. This course focuses on the internal structure and origin of the Earth and the processes that change and shape it. The laboratory component focuses on the identification of rocks and minerals, topographic and geologic map exercises demonstrating the work of water, wind, ice and gravity and effects of tectonic activity. Field trips are required to certain local points of geological interest.

Type of Class/Course: Degree Credit

- Text: McGeary, David, Charles C. Plummer, and Diane H. Carlson. *Physical Geology. Earth Revealed.* 4th ed. Boston: McGraw, 2001. Print.
- Busch, Richard M. Laboratory Manual in Physical Geology.7th ed. Upper Saddle River: Prentice, 2006. Print.
- Tarbuck, Edward J., and Frederick K. Lutgens. *Earth, A, Introduction to Physical Geology*. 11th ed. Upper Saddle River: Prentice, 2015. Print.

Ruhle, James L. Geology Laboratory Manual for Distance Learning. Dubuque: Kendall, 1998. Print.

Additional Required Materials: None

Course Objectives:

By the end of the course, a successful student should be able to:

- 1 Explain and practically apply the principles of the scientific method,
- 2 Demonstrate a conceptual understanding of fundamental concepts, principles, and interactions of Earth's systems applicable to the geological sciences,
- 3 Demonstrate an understanding of plate tectonics and the Earth's resources,
- 4 Apply understanding of the internal and external processes that shape and form the Earth,
- 5 Demonstrate an understanding of the rock cycle and identify and describe the basic properties of rocks and minerals,

West Kern Community College District

- 6 Demonstrate an understanding of the Earth through the identification and evaluation of minerals,
- 7 Demonstrate an understanding of the Earth through the identification and evaluation of igneous, sedimentary and metamorphic rocks,
- 8 Demonstrate an understanding of how geological environments are formed, changed and eroded through time,
- 9 Demonstrate an ability to communicate complex course concepts effectively in writing and diagrams and apply critical thinking and problem solving skills to make informed decisions in life, and
- 10 Demonstrate the ability to read and interpret topographic and geologic maps and answer questions pertaining to geologic processes.

Course Scope and Content: (Lecture)

Unit I	An I	ntroduction to Geology	
	А.	The science of geology	
	В.	Geologic time	
	C.	The nature of scientific inquiry	
	D.	Earth's spheres	
	E.	Earth as a system	
	F.	Early evolution of Earth	
	G.	Earth's internal structure	
	Н.	The face of Earth	
	I.	Rocks and the rock cycle	
Unit II	Plate	Tectonics: A Scientific Revolution Unfolds	
	А.	Continental drift: an idea before its time	
	В.	The great debate	
	С.	Continental drift and paleomagnetism	
	D.	A scientific revolution begins	
	E.	What drives plate motions	
Unit III	Matter and Minerals		
	А.	Minerals: building blocks of rocks	
	В.	Atoms: building blocks of minerals	
	C.	Why atoms bond	
	D.	Isotopes and radioactive decay	
	E.	Crystals and crystallization	
	F.	Physical properties of minerals	
	G.	How are minerals named and classified	
	Н.	The Silicates	
	I.	Important nonsilicate minerals	
Unit IV	Mag	ma, Igneous Rocks, and Intrusive Activity	
	А.	Magma: the parent material of igneous rock	
	В.	Igneous processes and compositions	
	C.	Igneous textures	
	D.	Naming igneous rocks	
	E.	Origin of magma	
	F.	How magmas evolve	
	G.	Partial melting and magma composition	

West Kern Community College District

TT	Intervalue increases anticity
H.	Intrusive igneous activity

Unit V	 B. Materials of C. Volcanic s D. Living in t E. Other volc 	canic Hazards of volcanic eruptions extruded during an eruption tructures and eruptive styles he shadow of a composite cone anic landforms nics and volcanic activity
Unit VI	 B. Weatherin C. Mechanica D. Chemical E. Rates of w F. Soil 	ernal processes g I weathering weathering eathering f soil formation g soils
Unit VII	 B. Origins of C. Detrital se D. Chemical se E. Coal – an F. Diagenesis G. Classificat 	s tance of sedimentary rocks sedimentary rock dimentary rocks sedimentary rocks organic sedimentary rock and lithification ion of sedimentary rocks ry environments and structures
Unit VIII	 A. What is m B. What drive C. Metamorp D. Common 1 E. Metamorp F. Metamorp 	d Metamorphic Rocks etamorphism es metamorphism hic textures netamorphic rocks hic environments hic zones g metamorphic environments
Unit IX	D.Fossils: evE.Dating withF.Geologic th	ating n of rock layers idence of past life h radioactivity

West Kern Community Co	ouege Distri	ct
Unit X	Crusta	al Deformation
	А.	Structural geology: a study of Earth's architecture
	B.	Deformation, stress, and strain
	C.	How rocks deform
	D.	Structures formed by ductile deformation
	E.	Structures formed by brittle deformation
	F.	Mapping geologic structures
Unit XI	Earth	quake and Earthquake Hazards
	А.	What is an earthquake
	B.	Faults, faulting, and earthquakes
	C.	Seismology: the study of earthquake waves
	D.	Locating the source of an earthquake
	E.	Measuring the size of earthquakes
	F.	Earthquake belts and plate boundaries
	G.	Earthquake destruction
	H.	Can earthquakes be predicted
	I.	Seismic risk on the San Andreas Fault
	J.	Evidence for plate tectonics at plate boundaries
Unit XII	Earth	's Interior
	A.	Gravity and layered planets
	B.	Probing Earth's Interior
	C.	Seismic waves
	D.	Earth's layers
	E.	Earth's temperature
	F.	Earth's three-dimensional structure
Unit XIII	Mass	Wasting: The Work of Gravity
	A.	Landslides
	В.	Mass wasting and landform development
	C.	Controls and triggers of mass wasting
	D.	Classification of mass wasting process
	E.	Slump
	F.	Rockslide
	G.	Debris flow
	H.	Permafrost
	I.	Submarine landslides
Unit XIV	Runni	ing Water and Groundwater
	A.	The hydrologic cycle
	B.	Running water
	C.	Streamflow
	D.	Stream channels
	E.	Base level and graded streams
	F.	Shaping stream valleys
	G.	Depositional landforms
	H.	Drainage patterns
	I.	Floods and flood control

West Kern Community College District Unit XV Glaciers and Glaciation Glaciers: a part of two basic cycles A. Formation and movement of glacial ice Β. C. Glacial erosion D. Glacial deposits E. Landforms made of stratified drift F. Effects of Ice-age glaciers G. Glacial theory and the Ice age H. Causes of glaciation Unit XVI Deserts and Wind Distribution and causes of dry lands A. B. Geologic processes in arid climates C. Evolution of desert landscape Transportation of sediment by wind D. E. Wind erosion F. Wind deposits Shorelines Unit XVII Coastal zone A. B. Waves and wave erosion C. Sand movement on the beach D. Shoreline features E. Stabilizing the shore F. Erosion problems along U.S. coasts G. Hurricanes Coastal classification H. I. Tides Unit XVIII Renewable and Nonrenewable Resources Traditional Fossil Fuels A. B. Oil Sands, Oil Shale, and Gas Hydrates C. Nuclear Energy D. **Renewable Energy Sources** E Mineral Resources F. Igneous and Metamorphic Processes G. Mineral Resources Related to Surface Processes Nonmetallic Mineral Resources H.

Course Scope and Content: (Laboratory)

- Unit I Introduction to Physical Geology A. The Earth as a System
 - B. The Scientific Method
 - C. Density of Various Rock Types
- Unit II The Plate Tectonic Model and Tectonic Boundaries
 - A. Identification of 14 Tectonic Plates
 - B. Convergent, Divergent, and Transform Boundaries

	C. Mechanisms of Plate Tectonics
Unit III	Mineral Properties and IdentificationA. Recognition of Various Mineral PropertiesB. Identification of 36 Unknown MineralsC. Mineral Families
Unit IV	The Rock Cycle and Classification of RocksA. Recognition of Five Reservoirs in the Rock CycleB. Classification of Igneous Rocks based on Texture and CompositionC. Identification of 12 Unknown Igneous Rocks
Unit V	Volcanoes and Volcanic HazardsA. Viscosity and Factors that Control ViscosityB. Shield, Cinder Cones, and Composite ConesC. Volcanic Hazards
Unit VI	Weathering and Soil ProfilesA. Types of WeatheringB. Soil TaxonomyC. Identification of Soil Horizons
Unit VII	Sedimentary Rocks and Sedimentary EnvironmentsA. Classification of Sedimentary Rocks based on Texture and CompositionB. Identification of 12 Unknown Sedimentary RocksC. Sedimentary Environments
Unit VIII	Metamorphism and Metamorphic RocksA. Agents of MetamorphismB. Classification of Metamorphic Rocks based on Texture and CompositionC. Identification of 12 Unknown Metamorphic Rocks
Unit IX	Relative and Numerical Age DatingA. Relative Age Dating PrinciplesB. Numerical Age Dating ProceduresC. Construct Geologic History of Various Sequences of Rock and Strata
Unit X	Faults and Folds – Crustal DeformationA. Agents of Crustal DeformationB. Faults Types and RecognitionC. Fold Types and Recognition
Unit XI	Earthquakes and Epicenter LocatingA. SeismologyB. Reading SeismogramsC. Epicenter Location
Unit XII	Earth's InteriorA. Fate of Seismic Waves in InteriorB. Identification of Layers in Earth by Composition

	C. Identification of Layers in Earth by Physical Properties
Unit XIII	Mass Wasting: The Work of Gravity
	A. Erosional Processes
	B. Identification of Mass Wasting Processes
	C. Hazards and Mitigation Associated with Mass Wasting
Unit XIV	Streams and Groundwater
	A. Erosional and Depositional Features Associated with Streams
	B. Porosity and Permeability in Groundwater
	C. Calculations using Groundwater Flow Laws
Unit XV	Topographic and Geologic Maps
0	A. Use of Topographic Maps
	B. Use of Geologic Maps
	C. Construction of Block Diagrams
Unit XVI	Energy and Mineral Resource
	A. Contrast Renewable and Nonrenewable Resource
	B. Evaluating Solar and Wind Energy Potential

C. Mapping of Ore Deposits

Learning Activities Required Outside of Class:

The students in this class will spend a minimum of 6 hours per week outside of the regular class time doing the following:

- 1. Studying
- 2. Answering questions
- 3. Completing required reading
- 4. Problem solving activity or exercise

Methods of Instruction:

- 1. Lecture-discussion periods (two hours per week)
- 2. Lab exercise periods (three hours per week)
- 3. Term project special studies or a term paper
- 4. Field Trips

Methods of Evaluation:

- 1. Substantial writing assignments, including:
 - a. term or other paper
 - b. written work
- 2. Computational or non-computational problem-solving demonstrations, including:
 - a. exams

- homework problems b.
- quizzes с.

3.

- laboratory reports d.
- Other examinations, including:
 - multiple choice a.
 - b. matching items
 - completion c.

Laboratory Category: Extensive Laboratory

Pre delivery criteria: All of the following criteria are met by this lab.

- Curriculum development for each lab. 1.
- 2. Published schedule of individual laboratory activities.
- 3. Published laboratory activity objectives.
- 4. Published methods of evaluation.
- 5. Supervision of equipment maintenance, laboratory setup, and acquisition of lab materials and supplies.

During laboratory activity of the laboratory: All of the following criteria are met by this lab.

- 1. Instructor is physically present in lab when students are performing lab activities.
- 2. Instructor is responsible for active facilitation of laboratory learning.
- 3. Instructor is responsible for active delivery of curriculum.
- 4. Instructor is required for safety and mentoring of lab activities.
- 5. Instructor is responsible for presentation of significant evaluation.

Post laboratory activity of the laboratory: All of the following criteria are met by this lab.

- Instructor is responsible for personal evaluation of significant student outcomes (lab exercises, 1. exams, practicals, notebooks, portfolios, etc.) that become a component of the student grade that cover the majority of lab exercises performed during the course.
- Instructor is responsible for supervision of laboratory clean up of equipment and materials. 2.

Supplemental Data:

TOP Code:	191400: Geology
SAM Priority Code:	E: Non-Occupational
Funding Agency:	Y: Not Applicable(funds not used)
Program Status:	1: Program Applicable
Noncredit Category:	Y: Not Applicable, Credit Course

West Kern	Community	College	District
-----------	-----------	---------	----------

Special Class Status:	N: Course is not a special class
Basic Skills Status:	N: Course is not a basic skills course
Prior to College Level:	Y: Not applicable
Cooperative Work Experience:	N: Is not part of a cooperative work experience education program
Eligible for Credit by Exam:	NO
Eligible for Pass/No Pass:	C: Pass/No Pass
Taft College General Education:	CSB1: CSU Area B1 CSB3: CSU Area B3 IG5A: IGETC Area 5A IG5C: IGETC Area 5C LNS: Local GE Natural Science